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1. INTRODUCTION

One of the most difficult problems in engine structural component

durability analysis is the determination of the temperatures and fluxes

in the structural components directly in contact with the hot gas flow

path. Currently there exists no rational analytical or numerical

technique which can effectively deal with this problem. The analysts

involved in the hot fluid dynamics who use the finite difference method

very rarely interact with those engaged in the thermal analysis of the

structural components where the dominant numerical method is the finite

element method. Since the temperature distribution in the structural

components are strongly influenced by both the fluid flow and the

deformation as well as the cooling system in the structure, the only

effective way to deal with this problem is to develop an integrated

solid mechanics, fluid mechanics and heat transfer analysis for this

problem.

In the present work, BEM is chosen as the basic analysis tool

principally because the definition of quantities like fluxes,

temperatures, displacements, and velocities are very precise on a

boundary based discretization scheme. One fundamental difficulty is, of

course, that a BEM analysis requires a considerable amount of analytical

work which is not present in other numerical methods. During the past

year all of this analytical work has been completed and a two-

dimensional, general purpose code has been written. This paper

summarizes a portion of that work.

2. PREVIOUS WORK

Virtually nothing has appeared in the literature on the analysis of

coupled thermoviscous fluid/structure problems via the boundary element

method, although some work has been done on the fluid and solid

separately. In general, the solid portion of the problem has been

addressed to a much greater degree. For example, a boundary-only

steady-state thermoelastic formulation was initially presented by Cruse

et al (1977) and Rlzzo and Shlppy (1977). Recently, the present authors
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developed and implemented the quasistatlc counterpart (Dargush, 1987).

Others, notably Sharp and Crouch (1986) and Chaudouet (1987), introduce

volume integrals, to represent the equivalent thermal body forces. A

similar domain based approach was taken earlier by BanerJee and

Butterfield (1981) in the context of the analogous geomechanical

problem.

Meanwhile, only a few groups of researchers are actively pursuing

the development of boundary elements for the analysis of viscous fluids.

The work reported in Piva and Morino (1987) and Piva et al (1987)

focuses heavily on the development of fundamental solutions and integral

formulations with little emphasis on implementation. On the other hand,

Tosaka and Kakuda (1986, 1987), Tosaka and 0nishi (1986) have

implemented single region boundary element formulations using

approximate incompressible fundamental solutions. This latter group has

developed sophisticated non-linear solution algorithms, and

consequently, are able to demonstrate relatively high Reynolds number
solutions.

3. INTEGRAL FORMULATION FOR SOLIDS

3.1 Introduction

In the present section, a surface only time domain boundary element

method is described for a thermoelastic body under quasistatic loading.

Thus, transient heat conduction is included, but inertial effects are

ignored. Formulations have been developed for three-dimensional, two-

dimensional and axisymmetric problems (Dargush, 1957)0 however, only the
2D plane strain case is detailed below.

3.2 Governing Equations

With the solid assumed to be a linear thermoelastic medium, the

governing differential equations for transient thermoelasticity can be
written:

a2uj a2ui a9

(k+M) aXiaxj + M axjaxj (3k+2M) a axi - 0 (3.1a)

a9 829
(3.1b)

where

ui
9

t

displacement vector

temperature

time
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xi
k
P

C e

k,g
a

Lagrangian coordinate

thermal conductivity

mass density

specific heat at constant deformation
Lame's constants

coefficient of thermal expansion

Standard indiclal notation has been employed with summations

indicated by repeated indices• For two-dimensional problems considered

herein, the Latin indices i and J vary from one to two.

Note that (3.1b) is the energy equation and that (3.1a) represents

the momentum balance in terms of displacements and temperature• The

theory portrayed by the above set of equations, formally labeled

uncoupled quasistatic thermoelasticity, can be derived from

thermodynamic principles• (See Boley and Weiner (1960) for details•)

3.3 Integral Representations

Utilizing equation (3.I) for the solid along with a generalized

form of the reciprocal theorem, permits one to develop the following

boundary integral equation:

c_a(_)u_(_,t) = f [G_a*t_(X,t) - F_a*u_(X,t)]dS(X ) .
S

where

(3.2)

S

Ua,t a

8,q

Ga_, Fa_

ca_

indices varying from 1 to 3

surface of solid

generalized displacement and traction

u a = [u 1 u 2 O] T

ta = [tI t2 q]T

temperature, heat flux

generalized displacement and traction kernels (Dargush,
1987)

constants determined by the relative smoothness of s at

and, for example, Ga_*ta denotes a Riemann convolution integral•

3.4 Numerical Implementation

The boundary integral equation (3.2) is an exact statement• No

approximations have been introduced other than those used to formulate

the boundary value problem• However, in order to apply (3.2) for the

solution of practical engineering problems, approximations are required

in both time and space•
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For the temporal discretization, the time interval from zero to t

is divided into N equal increments of duration At. Within each time

increment, the primary field variables, tB and uB, are assumed constant.
As a result, these quantities can be brought outside of the time

integral. Since the integrand remaining is known in explicit form from

the fundamental solutions, the required temporal integration can be

performed analytically, and written as

N+1-n nat

G_a (X-_) = ; G_a(X-_,t-_)d_ (3.3)

(n-l)At

Combining this, and similar expressions for the F_a integral, with (3.2)

produces

N N+l-n N+l-n

I[ ]
n=l s (3.4)

Next, spatial discretization is introduced in order to evaluate the

surface integrals appearing in (3.4). In the present implementation,

both linear and quadratic boundary elements are available for the

description of the geometry, as well as, the primary field variables.

Once this is accomplished, the nodal generalized displacements and

tractions are brought outside the surface integral and the remaining

shape function-kernel products are integrated numerically.

Sophisticated, self-adaptive integration algorithms are employed to

ensure accuracy and numerical efficiency.

With the discretization of the boundary integral equation, in both

time and space, complete, a system of algebraic equations can be

developed to permit the approximate solution of the original quasistatic

problem• This is accomplished by systematically writing the integral

equations at each global boundary node. The ensuing nodal collocation

process produces a global set of equations of the form

N

( [GN+l-n]{t n} - [FN+l-n]{u n} ) = {O} ,

n=1

(3.5)

in which {t n} and {un] are nodal quantities with the superscript

referencing the time step index. It should be noted that during this

collocation process, the indirect 'rigid body' technSque is employed to

determine the strongly singular diagonal block of [F1].

In a well-posed problem, at any time t, the set of global

72



generalized nodal displacements and tractions wlll contain exactly 3P

unknown components, where P is the total number of Functional nodes.

Then, as the Final stage in the assembly process, equation (3.5) can be

rearranged to form

N-1

[Al]{x N} = [B1]{yN} _ _ ( [GN+l-n]{t n} _ [FN+l-n]{u n} ) (3.6)

n=l

in which {xN} and {_} represent the unknown and known nodal components,

respectively. In addition, the summation represents the effect of past

events. Thus, all quantities on the right-hand side of (3.6) are known

at time step N.

It should be emphasized that the entire boundary element method

presented, in this section, has involved surface quantities exclusively.

A complete solution to the well-posed linear quasistatic problem, with

homogeneous properties, can be obtained in terms of the nodal boundary

response vectors, without the need For any volume discretization.

4. INTEGRAL FORMULATIONS FOR FLUIDS

4.1 Introduction

Next, attention turns to the hot fluid. During the course of the

work, several alternative integral formulations were developed for both

incompressible and compressible flow including the effects of thermal

coupling. The most promising of these formulations is discussed below.

4.2 Governing Differential Equations for Hot Fluid Flow

Initially, the governing equations for a general compressible,

Newtonian fluid are presented. This set will provide the basis for the

development of the boundary integral representation. (The derivation of

these equations can be found in standard fluid mechanics texts. See

Yuan (1967), for example.)

The conservation of mass in the absence of sources and sinks in the

medium gives the equation of continuity:

ap a(PVi)
-- + - 0 . (4.1)
at ax t

By introducing kinematics and the constitutive law for a Newtonian

fluid with constant coefficients of viscosity, the familiar Navier-

Stokes equations appear:

73



8v i 8v i

P (a--t-+ vj a---_j)= (_.+.)

a2vj
+ p

O2vi 8p

8x i

(4.2)

In the above,

vi velocity vector
p pressure
t time

xi Eulerian coordinate
p mass density

_,p viscosity coefficients.

For a non-Newtonian fluid, additional terms appear in (4.2). However,

these terms can be conveniently considered as pseudo-body forces,

exactly as done in an elastoplastic analysis of a solid.

Next, the balance expressed by the first law of thermodynamics in

conjunction with Fourier's law of heat conduction gives the energy

equation as

80 80 820 Ovi
--+Y

PCv (_ + vi _i_--JT)= k 8xiaxi p 8x i
(4.3)

where

0

k

cv
Y

temperature

thermal conductivity

specific heat at constant volume
viscous dissipation.

Note that in (4.3), the thermal conductivity has been assumed constant.

Finally, the equation of state for an ideal fluid is introduced to

relate temperature and pressure. That is,

p = pRO (4.4)

in which R is a gas constant.

The equations (4.1-4.4) represent a coupled set of five equations

with five unknowns, namely vi, p, p and 8.

For the special case of incompressibility, p is constant and the

continuity condition becomes simply

8v i

Ox i

(4.5)
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while the equations of motion reduce to

avi 8vi 82vi ap

p (_-_- + vj a-_j) = p axj_xj ax i
(4.6)

Then, (4.5) and (4.6) form a system of three equations in the unknowns

v i and p. The equations of energy and state are no longer required to
determine fluid motion. However, under non-isothermal conditions, the

fluid temperatures can be obtained from (4.3) after the velocities are

established. The exception, to this two stage approach, is for buoyancy

driven flow in which the body forces produced by temperature gradients

are dominant. In this latter case, continuity (4.5), momentum (4.6) and

energy (4.3) conservation must be satisfied simultaneously.

4.3 Integral Representations

During the early stages of the present work (1986-87), a vorticity

formulation was implemented. It was observed that while this

formulation has some very convenient features, incorporation of

appropriate boundary conditions for a practical problem becomes a

difficult task. At the later stages of the current work, it may be

possible to incorporate these vorticity integrals within a coupled

compressible potential flow -convective heat transfer formulation to

provide a very cost effective method for the solution of the present

problem. However, before any such approximate method is developed, it

is important to examine the full scale implementation of the complete

governing equations. With that in mind, recent attention has been

directed exclusively toward velocity-pressure-temperature integral

formulations.

One of the primary requirements of developing a boundary element

formulation is that the fundamental solution of the governing

differential equations must exist. These fundamental solutions can be

viewed in same sense as the shape functions in the finite element

method. For solid mechanics these have been very well explored.

Starting with Kelvin's solution (1846), investigators such as Stokes,

Poisson, Boussinesq, Mindlin, and Nowacki have provided both static and

transient solutions which form the basis of the boundary element

formulations in solid mechanics. It is unfortunate that workers in

fluid mechanics have not found any use for these fundamental solutions

in the infinite space and therefore have not made any attempt to derive

such solutions. Since the boundary element formulations could not be

developed without these solutions, a substantial amount of effort was

devoted in the present work to successively derive more and more

complete solutlons of the differential equations. As a first

approximation the compressibility terms in (4.2) were ignored and the

complete fundamental solution for a transient body force and a transient

heat source was derived. Details of the derivation can be found in

Dargush et al. (1987) or, via an alternate method, in Piva and Morino
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(1987). In a subsequent effort these solutions were extended to include

the effect of compressibility, although in the latter case, some

approximation was necessary.

These fundamental solutions are used in conjunction with a

reciprocal identity for fluid dynamics to produce the following integral

representation for the velocity:

cBa(_)vB(_,_) = _" [ GBm*tB(X,t) - F_a*v_(X,t) ] dS(X)

s

+ ; [ GBa'f_(Z,t) ]dV(Z)
v

where in two-dimensions

(4.7)

v8 = [vI v2 O] T

tf_= [tI t2 q]T

fB = [fl f2 @]T .

The generalized body forces, fB' appearing in (4.7), include the
convective inertia forces, and in-the compressible case, forces due to

variable density. The time dependent functions G_a and F_e can be
developed directly from the fundamental solutions•

While the formulation presented above is perfectly valid, two

additional modifications have proved quite beneficial. The first

involves performing integration by parts on the convective body force•

This releases a nonlinear surface integral, but also completely

eliminates the need for calculating velocity gradients in incompressible

flow. With compressibility, only the scalar dilatation is required•

Thus, in both cases, significant computational savings result.

The other modification involves the decomposition of the total

velocity into the free stream velocity plus a velocity perturbation.

Upon substituting this decomposed form into the governing differential

and integral equations, one finds that the volume integration is

required only in portions of the flow field in which the total velocity

differs from that of the free stream• In a practical sense, this means

that, in many problems, volume discretization can be confined to a small

region around an obstruction.

4.4 N,_erteal Implementation

The numerical treatment of the equations in thermoviscous fluid

dynamics follows very closely that described in Section 3 for transient
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thermal stress analysis. However, now due to the volume integral

appearing in (4.7), the interior must be subdivided into cells. The

geometry of each cell is defined by nodal points and quadratic shape

functions. In two-dimensions, six and eight-noded cells are available.

Meanwhile, either a linear or quadratic variation can be employed for

the functional representation.

Just as for the thermoelastic case, a set of algebraic equations

can be developed by writing the integral equation at each global node.

However, now interior, as well as, boundary nodes must be included, and

the resulting equations become highly nonlinear due to the convective

terms. After the collocation process is complete, the final system of

equations can be expressed as

Abx - Gbf = Bby (4.8a)

v = AVx + BVy + GVf (4.8b)

= A_x + Bey + Gef (4.8c)

where

x,y are the known and unknown boundary quantities

v are the interior velocity vectors

z are velocity gradients

An iterative algorithm similar to the initial stress method (BanerJee

and Butterfield, 1981) can then be developed as follows:

.

2.

3.

4.

5.
6.

Assume f = 0

Increment boundary conditions

Calculate the boundary and interior solutions x,v,v and e

Determine f, _ ,and Pv at this time increment
Calculate the boundary and interior solutions again

If the solution is not significantly different from (3), go to

(2); if the solution is different, then go to (4).

Unfortunately, however, convergence is usually achieved with such

an algorithm only at low Reynolds number. More generally the interior

equations must be brought into the system matrix along with the boundary

equations, and a full or modified Newton-Raphson iterative algorithm

must be employed to obtain solutions at moderate or high Reynolds

number. This type of algorithm has recently been implemented for multi-

region flow fields.

5. COUPLING OF SOLIDANDFLOID

The coupling of the solid and fluid phases is most readily

accommodated via the concept of the generic modeling region. Thus, the

77



fluid-structure interface is nothing more than a boundary between two

GMR's. In the simplest case, temperature, flux, and tractions are

matched across the fluid-structure interface, while a temporal

approximation is introduced to relate boundary displacements of the

solid to the corresponding fluid velocities. However, additional

sophistication is possible. For example, thermal resistance can be

introduced to model the effects of coatings.

6. NUMERICAL _PLES

6.1 Introduction

All of the formulations discussed above have been implemented as a

segment of GF-BEST, a general purpose boundary element code. In this

section, a few simple examples are included, primarily, to demonstrate

the validity and attractiveness of the boundary element formulations.

6.2 Tube and Fin Heat Exeha_er

As a first example, consider the thermal stress analysis of a tube

and fin heat exchanger. This type of analysis, under transient

conditions, is often required to evaluate the durability of proposed

designs. Consider a stainless steel tube with a wall thickness of

O.050in. brazed to a 0.020in. gauge fin of similar material. Figure 6.1

details the geometry. Notice that a fillet radius of 0.015in. is

assumed between the tube and fin.

The heat exchanger is cooled continuously by a fluid at O°F flowing

inside the tube. It is assumed that this cooling process is of

sufficient duration to produce zero temperature, uniformly, throughout

the tube and fin. Then, suddenly, at time zero the outer surfaces of

the tube and fin are exposed to a 1000°F hot gas. The convection

coefficients for the inner and outer surfaces are 20 and 10 in.-

Ib./sec.in2°F, respectively. It should be emphasized that using today's

standard technology, these coefficients are determined experimentally or

crudely approximated from handbooks.

The following material properties for the metal apply:

E = 29x106 _si,
9.6x10-O/OF,

k = 1.65 in.-ib./sec.in.OF,

= 0.30,

pc 8 = 368 in.-ib./in.S°F .

For the analysis one-half of a single fin is isolated. The two-

dimensional boundary element model is depicted in Figure 6.2. The model

consists of two Generic Modeling Regions (GMR's) corresponding roughly

to the tube plus braze fillet and the fin.

The resulting temperature contours are displayed in Figure 6.S at
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0.25 sec., 0.50 sec., 0.75 sec., and 1.00 sec. As expected, the thin

fin, distant from the cold fluid, heats up much more rapidly than the

tube. The most severe thermal gradients exist near the braze Joint.

Von Mises equivalent stresses are plotted in Figure 6.4 for points on
the inner tube surface and on the fillet radius.

6.3 Driven Cavity

The two-dimensional driven cavity has become the standard test

problem for incompressible computational fluid dynamics codes. In a

way, this is unfortunate because of the ambiguities in the specification

of the boundary conditions. However, numerous results are available for

comparison purposes.

The incompressible fluid of uniform viscosity is confined within a

unit square region. The fluid velocities on the left, right and bottom

sides are fixed at zero, while a uniform non-zero velocity is specified

in the x-direction along the top edge. Thus, in the top corners, the x-

velocity is not clearly defined. To alleviate this difficulty in the

present analysis, the magnitude of this velocity component is tapered to
zero at the corners.

Results are presented for the 144 cell boundary element model shown

in Figure 6.5. Notice that a higher level of refinement is used near

the edges. Spatial plots of the resulting velocity vectors are

displayed in Figures 6.6, 6.7, and 6.8 for Reynolds numbers (Re) of 100,

400 and 1000, respectively. Notice that, in particular, the shift of

the vortical center follows that described by Burggraf (1966) in his

classic paper. A more quantitative examination of the results can be

found in Figure 6.9, where the horizontal velocities on the vertical

centerline obtained from the present analysis (i.e., GP-BEST results)

are compared to those of Ghia et al. (1982). It is assumed that the

latter solutions are quite accurate since the authors employed a 129 by

129 finite difference grid. It is apparent, from the figure, that the

present boundary element model has some difficulty in capturing the

sharp knee of the curve at Re = 400. This becomes accentuated as the

Reynolds number increases, and consequently, a finer mesh is required.

It should be noted that the simple iterative algorithm fails to converge

much beyond Re = 100. Beyond that range the use of a Newton-Raphson

type algorithm is imperative.

6.4 Flow Over a Cylinder

Finally, an example of unconfined flow around an obstacle is

considered. In particular, the oft-studied case of a unit diameter

circular cylinder is examined. The boundary element mesh is illustrated

in Figure 6.10. Notice that three distinct regions are evident. The

smallest region, labelled GMR1, represents a thermoelastic thick-walled

cylinder. Only the surface of the solid is discretized. The next

region, GMR2, models a thermoviscous fluid in the vicinity of the
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cylinder. In GMR2 volume cells are required due to convective body

forces. However, sufficiently remote from the cylinder, these body

forces become negligible and once again a boundary-only region, in this

case GMR3, is valid.

Steady-state velocity vector plots are displayed in Figures 6.11

and 6.12 for Re = 20 and 40, respectively. The recirculating zone,

behind the cylinder, is clearly visible.

Additionally, the problem was extended to include thermal effects.

The temperature of the fluid at inlet was specified as 1000°C, while

that at the inner surface of the hollow cylinder was maintained at O°C.

The effective heat transfer coefficient between the fluid and solid can

then be obtained from the resulting temperature and flux at the outer

surface of the cylinder. The distribution of the nondimensional Nusselt

number (Nu) around the circumference is plotted in Figure 6.13. These

curves agree, at least, qualitatively with the experimental results of

Eckert and Soehngen (1952). Of course, if the purpose of the analysis

is to determine the temperature and stress in the solid, then there is

really no need to compute the heat transfer coefficients. The desired

solid temperatures and stresses come directly out of the analysis.

7. CONCLUSIONS

Boundary element formulations for hot fluid/structure interaction

have been developed for the first time and implemented in a general-

purpose two-dimensional code. These formulations are attractive

primarily because of the ability of the integral method to precisely

determine surface behavior at the fluid/structure interface.

Additionally, in many instances, only a small portion of the flow field

requires domain discretization. Thus, potentially, computational tlme

and modeling effort could be less than with finite difference or finite

element techniques.

However, much work remains. For example, the compressible

formulation must be tested and a variety of techniques, analogous to

upwinding, must be investigated in order to push solutions to the

Reynolds number range of interest for SSME and beyond.
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